Технология ремонт распределительного вала

Ремонт распределительного вала

Распределительный вал изготовляют из стали 13H2A, поверхность кулачков цементуют на глубину 1,3—2,0 мм. Твердость цементованной поверхности HRC≥58; нецементованной НВ 170.

Возможные неисправности детали следующие: износ шеек, износ поверхности буртика упорной шейки, износ вершины кулачков, износ шлицев, повреждение резьбы, прогиб вала и коррозия.

Технологический процесс ремонта распределительного вала состоит из таких операций:

  1. шлифования вершин кулачков;
  2. наплавки кулачков;
  3. шлифования торцов и профилей кулачков, правки вала;
  4. шлифования шеек под хромирование;
  5. хромирования шеек и буртиков;
  6. шлифования шеек после хромирования;
  7. полирования;
  8. оксидирования.

Износ кулачков допускается до размера h — 50 мм ( см. рис. 38 ). Если размер кулачка не выходит за этот предел, то ограничиваются зачисткой вершины кулачка для придания ей плавной закругленной формы. Вблизи вершины кулачка допускаются следы износа шириной до 3 мм.

Кулачки высотой менее 50 мм наплавляют твердым сплавом сормайт № 2. Перед наплавкой вершину кулачка срезают шлифовальным кругом до размера h = 48 мм. Затем деталь укладывают в призмы специальной ванны так, чтобы подлежащий наплавке кулачок выступал над поверхностью зеркала проточной воды на 7— 8 мм ( рис. 115 ). Температура воды должна быть 30—45° С. После этого вершину кулачка подогревают ацетилено-кислородным науглероживающим пламенем с помощью горелки с наконечником № 4.

Рис. 115. Схема наплавки кулачка.

Для наплавки используют прутки диаметром 6 мм, флюсом служит порошок буры или состав с содержанием хлористого натрия. Флюс периодически добавляют в сварочную ванночку. Пруток copмайта помещают под пламенем горелки так, чтобы стекающие капли сормайта покрывали наплавленную поверхность кулачка.

Кулачок, наплавленный сплавом при температуре 870—900° С, быстро погружают в воду, поворачивая вал на 180°.

Разрешается наплавлять не более трех кулачков. Наплавленный слой должен быть плотным, без раковин, пор и трещин. Твердость наплавленного металла должна быть HRC≥48.

После наплавки кулачков вал подвергают отпуску при температуре 200—220° С в течение 30 мин. Затем его правят на призмах под реечным прессом.

При укладке вала 1-й и 6-й шейками в призмы допускается биение рабочих шеек и наружной поверхности шлицев не более 0,07 мм.

Механическую обработку наплавленных кулачков начинают с удаления с помощью шлифовального круга из электрокорунда зернистостью 34—46 и твердостью CM2—C1 наплывов металла на торцовых поверхностях кулачков. Ширина кулачка должна быть 16±0,4 мм. Профильную поверхность кулачка шлифуют кругом из электрокорунда на керамической связке зернистостью 60—80 и твердостью C2—CT1 на специальном профильно-шлифовальном станке по схеме, показанной на рис. 116 .

Вал устанавливают в центры и жестко связывают со шпинделем 3, несущим копир 5. Под шейки вала подводят три люнета. Задняя и передняя ведущая бабки станка установлены на столе 6, качающемся вокруг оси 7. Пружина 4 стремится отклонить стол против часовой стрелки, прижимая копир 5 к ролику 2. Распределительный вал, связанный с копиром, совершает качательное движение, и шлифовальный круг 1 придает вершине кулачка нужный профиль.

Рис. 116. Схема обработки профиля кулачка.

Для того чтобы сохранить фазы газораспределения при сборке дизеля, не рекомендуется снимать слой металла в местах перехода рабочей части профиля в нерабочую.

Согласно техническим условиям нa регулировку дизеля зазор между затылком кулачка и тарелкой клапана ( рис. 117, а ) равен 2,34 мм, а расстояние от оси вала до тарелки клапана 20 мм.

Клапан начинает открываться в тот момент, когда точка А1 кулачка коснется тарелки клапана ( рис. 117, б ) и линия ОА1 будет перпендикулярна плоскости тарелки. Закрытие клапана закончится, когда точка А2 отойдет от тарелки. Допустим, что ОА1 больше ОА2 на величину а. Если клапан открывается своевременно, то закрытие его будет происходить несколько раньше. Ошибку в фазе можно определить из выражения

Рис. 117. Схема работы кулачка: а — кулачок в верхнем положении; б — начало открытия клапана.

Если ОА1 = 17,66 мм и а = 0,1 мм, то β составит 6°. Следовательно, незначительная ошибка в расположении точки сопряжения боковых дуг профиля с параллельными участками вызывает значительный сдвиг фазы; в этом случае регулировка газораспределения дизеля становится невозможной.

Для того чтобы сохранились правильные фазы распределения, ось симметрии кулачка должна быть параллельна оси копира. Установку кулачка относительно копира производят с помощью стрелочного приспособления ( рис. 118 ). По градуированной шкале копир устанавливают в нулевое (неходное) положение. Затем шкалу 6 приспособления устанавливают основанием 1 на качающийся стол против кулачка, который подлежит шлифованию.

Скобу 3 стрелки 5 устанавливают так, чтобы упор 4 коснулся затылка кулачка. Покачиванием скобы на угол, ограничиваемый роликами 2, по шкале прибора определяют величину угла колебания стрелки. Распределительный вал поворачивают относительно неподвижного шпинделя до тех пор, пока стрелка не будет одинаково отклоняться вправо и влево от нулевой линии шкалы. После этого вал жестко связывают со шпинделем станка. Таким образом устанавливают каждую пару шлифуемых кулачков.

Рис. 118 Стрелочное приспособление.

При шлифовании кулачков не рекомендуется устанавливать вал по делительному устройству станка, так как весьма вероятно, что погрешности деления данного станка не совпадают с погрешностями станков, на которых кулачок шлифовался при изготовлении и ремонте; вследствие этого возможен значительный сдвиг фаз.

Точность обработки кулачка также зависит от формы копира, определяемой профилем кулачка и конструктивными элементами станка.

Изношенные шейки вала (диаметром менее 29,85 мм) восстанавливают хромированием. Для того чтобы шейкам придать правильную геометрическую форму, их предварительно шлифуют. Диаметр шеек после шлифования должен быть не менее 29,65 мм; овальность и конусность не более 0,04 мм.

Для шлифования шеек вала рекомендуется круг из корунда на керамической связке зернистостью 46—60, твердостью C2—СT1.

После шлифования гаейки обрабатывают наждачным полотном и промывают бензином. Поверхности, не подлежащие хромированию, изолируют листовым целлулоидом или полихлорвиниловым пластикатом. К одной из средних шеек вала прикрепляют подвесное приспособление, представляющее собой стяжной хомут с крючком. Шейки вала, которые будут хромироваться в первый прием, обезжиривают бензином и кашицей кальциево-магниевой извести. Затем вал промывают холодной проточной водой, подвешивают в ванне для хромирования, декапируют и покрывают блестящим осадком хрома. Толщина хромового покрытия должна быть 0,15—0,20 мм. После промывки вала в дистиллированной и холодной проточной воде приступают к подготовке и хромированию остальных шеек вала. При необходимости также хромируют рабочие поверхности упорных буртиков первой шейки. Хромированные шейки шлифуют. Диаметр шейки после шлифования должен быть равен 30Ш -0,06 -0,095 мм (см. рис. 38), ширина между буртиками первой шейки 44 Л +0,34 4+0,17 мм. Овальность и конусность не более 0,03 мм.

При срыве не более двух ниток резьбу в отверстии распределительного вала исправляют метчиком.

Следы коррозии на нерабочих поверхностях вала удаляют полированием войлочным кругом, накатанным корундовым порошком зернистостью 100—120. Для отделки рабочих поверхностей детали до металлического блеска применяют мягкий круг и пасту ГОИ. Отремонтированный вал для предохранения от коррозии оксидируют.

Источник

X Международная студенческая научная конференция Студенческий научный форум — 2018

ВИДЫ РЕМОНТА РАСПРЕДЕЛИТЕЛЬНЫХ ВАЛОВ

В процессе эксплуатации на распределительный вал с конструктивно заложенной малой жесткостью воздействуют вибрация, знакопеременные нагрузки, сила трения, среда. Вследствие чего возникают дефекты вала: износ кулачков, опорных шеек и увеличение прогиба.

При выборе способов восстановления распредвала и разработке технологического процесса главным образом необходимо учитывать перспективность способов, определяемая возможностями достижения высокой производительности, требуемого качества и низкой себестоимости.

Устранение увеличенного прогиба распределительного вала, характеризуемого биением

Биение определяется с помощью часового индикатора и устраняется правкой на холодную (без применения нагрева) посредством выдавливания прессом или рихтовкой. При этом учитывают материал вала (чугун или сталь), а также допуски на биение предоставленные заводом-изготовителем. Далее вал необходимо подвергнуть динамической балансировке на специальном оборудовании с целью предупреждения возврата детали к прежнему изгибу.

Допускаемое биение средних опорных шеек относительно крайних не более 0,05 мм для большинства двигателей. При этом предусмотрены некоторые исключения. Биение шейки под распределительную шестерню допускается не более 0,03 мм.

Технология восстановления кулачков распределительного вала

Распределительные валы работают в условиях знакопеременных нагрузок. Для их восстановления наиболее рационально в качестве наплавки или напыления применять порошковые твердые сплавы. Для большинства кулачков требуется наплавить только верхушку. Однако при значительных износах кулачки наплавляют по профилю и затем шлифуют под номинальный размер.

Наиболее универсальными и совершенными методами нанесения защитных покрытий являются наплавка и напыление плазменной дугой. Опорные шейки распредвала наращивают методом электро-дуговой металлизации с последующей обработкой. В этом случае необходимо расточить постель головки в чистовой размер. Шлифуют шейки распредвала на круглошлифовальных станках типа ЗБ151. После процедуры напыления распредвала твёрдость покрытия не уступает заводским параметрам.

В последнее время наиболее активно внедряют технологию плазменной наплавки проволочными и порошковыми материалами. В связи с широкой универсальностью использования различной гаммы выпускаемых присадочных порошков процесс плазменной наплавки порошковыми материалами наиболее эффективен.

В настоящее время среди методов порошковой плазменной наплавки наиболее активно используется метод порошковой плазменной наплавки, получивший название РТА — процесс (plasma transferred arc). При этом методе действуют одновременно основная дуга (горящая между электродом и изделием) и косвенная или пилотная дуга (горящая внутри плазмотрона между электродом и плазмообразующим соплом). В связи с тем, что процесс нанесения покрытий только косвенной плазменной дугой в России называется плазменным напылением, новая технология получила название плазменная наплавка-напыление.

Процесс плазменной наплавки-напыления (РТА — процесс) обеспечивает использование пилотной (косвенной) дуги для расплавления присадочного порошка и основной дуги (переносимой) для поддержания необходимой температуры частиц порошка осажденной на детали. При этом увеличение времени нахождения частиц порошка при высокой температуре способствует максимальному сцеплению и уплотнению частиц с минимальным перегревом поверхности детали. Оптимизация основных характеристик процесса (токов основной и пилотной дуги, расстояния до изделия, скорости подачи порошка и скорости перемещения плазмотрона) выявило минимальную чувствительность к скорости подачи порошка и в определенных пределах к скорости перемещения плазмотрона.

Плазменную наплавку металла можно реализовать двумя способами:

1. Струя газа захватывает и подает порошок на поверхность детали;

2. В плазменную струю вводится присадочный материал в виде проволоки, прутка, ленты.

В качестве плазмообразующих газов можно использовать аргон, гелий, азот, кислород, водород и воздух. Наилучшие результаты наплавки получаются с аргоном и гелием.

Технология восстановления опорных шеек распредвала

Для восстановления работоспособности элемента применяют различные способы. Выбор рационального способа восстановления деталей определяется по критериям применяемости, долговечности и технико-экономической эффективности.

Электроконтактные способы восстановления деталей по сравнению с другими, имеют ряд преимуществ на этапе восстановления шеек распределительного вала. Среди них – высокая производительность и низкая энергоемкость процесса, незначительная зона термического влияния, отсутствие мощного светового излучения и газовыделений, снижение потерь присадочного материала в результате разбрызгивания и выгорания легирующих элементов, сохранение первоначальных свойств материала детали при высокой прочности получаемого покрытия с основным металлом. Причем для получения покрытий ЭКП можно использовать однокомпонентные порошки, применяемые для других способов наплавки, используемые в порошковой металлургии; порошковые смеси, которые могут быть двух- или многокомпонентными и состоять из различных металлических и неметаллических порошков; спеченные из порошков ленты, стальные ленты и проволоки; комбинированные материалы.

Механическая обработка валов после восстановления

Точение закаленных сталей имеет ряд преимуществ по сравнению со шлифованием. При твердом точении в каждый момент времени участвует одна точка режущей кромки, что позволяет легко обрабатывать сложные контуры без применения дорогостоящих профильных кругов, используемых при шлифовании. К тому же, твердое точение дает возможность обрабатывать сложные поверхности за один установ.

В результате обеспечивается превосходная точность позиционирования, сокращается число установов заготовки и снижается риск поломки детали. Процесс твердого точения также более благоприятен для окружающей среды, так как на данной операции не образуются абразивная пыль, как при шлифовании, и не требуется применение СОЖ.

В конечном счете, при твердом точении сокращаются затраты на обслуживание станка, упрощается управление технологическим процессом, а также обеспечиваются высокая производительность и качество обработки. Благодаря всем этим преимуществам переход к твердому точению значительно сокращает расходы на производство.

Рассмотренные методы восстановления распределительных валов позволяют устранить наиболее распространенные дефекты данного элемента. Качественное восстановление обеспечивает долговременную последующую эксплуатацию, и снимает необходимость приобретения новой детали.

Список литературы

1. Глазунов С.Н. Курс лекций: Технологические процессы реновации. – М: МГТУ им. Н.Э. Баумана, 2009.

2. Шиповалов А.Н. Технология восстановления кулачков распределительных валов плазменной наплавкой // Автореферат. –М: ФГОУ ВПО ГРАЗУ, 2010. – 17с.

3. Воловик Е.Л. Справочник по восстановлению деталей. – М: Колос, 1981. – 351 с.

4. Вощанов К.П. Ремонт оборудования сваркой. – М: Машиностроение, 1967. – 192 с.

Источник

Читайте также:  Выездной мастер по ремонту телевизоров
Оцените статью