Меню

Энергосберегающих ламп схемы ремонт

Устройство энергосберегающей лампы. Схема и ремонт.

Схема и ремонт люминесцентных энергосберегающих ламп

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 % . Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц . В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA. Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003 . Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор DB3 (VS1) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Диодный мост, выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1, дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии 🙂 вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1, который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш-образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор. На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1. Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Читайте также:  Идеальный ремонт все эфиры

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Опасность люминесцентных ламп и рекомендации по использованию.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности .

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью .

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра. Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

С холодным запуском

С горячим запуском

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC — терморезистор). На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

Читайте также:  Hunter 24vac solenoid ремонт

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.

Источник

Как отремонтировать энергосберегающую лампу своими руками

Срок эксплуатации энергосберегающих лампочек (ЭСЛ) большой. Но часто, из-за недобросовестности производителя или неправильного обращения, лампа перестает работать через месяц. Потребители интересуются: возможен ли ремонт энергосберегающих ламп своими руками. Все возможно. Но следует оценить, стоит ли его производить, изучить принцип действия и ремонта.

Стоит ли ремонтировать энергосберегающие лампы

К вопросу стоит ли ремонтировать энергосберегающую лампу своими руками подходят индивидуально. Кто-то не хочет заморачиваться, купит новую или обменяет по гарантии. Кто-то захочет разобраться в чем причина поломки и исключить ее. Но стоит понимать, что ремонт производится при наличии нескольких неисправных лампочек. Так как из трех вышедших из строя ламп соберется одна исправная.

Каждая лампочка рассчитана на конкретный срок, имеет ограниченные резервы. Такие данные указаны на индивидуальной упаковке.

Надо понимать, что на ремонт придется потратиться на запчасти, если невозможно их взять с ряда поломанных ламп. Также уйдет время на поездку в магазин, поиск причины, ремонт.

Часто после ремонта лампочки при включении загораются с опозданием.

Принцип действия и схема

При ремонте следует учесть что ЭСЛ состоит из нескольких элементов: электроды в колбе, цоколь (резьбовой, штырьковой), пусковое устройство. Благодаря встроенному последнему элементу, устройство малогабаритно.

Принцип работы: при включении подается напряжение, в результате чего происходит нагревание электродов. После чего высвободившиеся электроны вступают во взаимодействие со ртутными атомами, происходит ультрафиолетовое излучение. Оно незаметно для восприятия глазом. Для этого система включает вещество под названием люминофор, поглощающее данное излучение и вырабатывающее привычный нам свет.

Работа энергосберегающей лампочки разбирается при рассмотрении схемы. Для примера описывается работа по схеме 11 ваттной лампочки.

Из схемы видно, что она состоит из цепей питания, в которые включены дроссель L2, предохранитель F1, четыре диода 1N4007 составляют диодный мост, С4 – конденсатор, C2, D1, R6 – элементы схемы, динистор, D2, D3, R1, R3 – элементы защитной функции. Не все лампочки содержат защитные элементы, их убираю производители при экономии на деталях.

В момент включения лампочки подается импульс C2, R6, он подается на транзистор Q2, происходит его открытие. Диод D1 после запуска блокирует часть схемы. Трансформатор TR1 возбуждается транзисторами. Через конденсатор С3 передается напряжение с контура L1, TR1, С3, С6. Трубка загорается в период, когда на конденсаторе С3 достигается напряжение в 600В. При розжиге лампы открывается первый транзистор и сердечник TR1 насыщается.

Причины неисправности лампочки

Чтобы понять причину поломки, надо разобраться в устройстве энергосберегающей лампы.

Все действия проводятся последовательно:

  • Готовится рабочее место.
  • Собирается весь инструмент, который может понадобиться в процессе – отвертка, мультиметр, паяльник, паечный набор.
  • Разбирается ЭСЛ.
  • Определяется причина поломки – мультиметром в лампочке проверяются нити накаливания. При исправном состоянии нитей проверяется балласт. И наоборот.
  • Устраняется.
  • Производится сборка системы.

Как разобрать

При разборе лампочки колба отсоединяется от цоколя. При этом проявляется аккуратность, так как цоколь легко повреждается. Отверткой отсоединяются детали, зафиксированные защелками (отвертка проникает в щель, и поворотом раздвигает половинки) – продвигается по контуру до полного отсоединения цоколя и колбы.

Открепляются проводки, которые направлены на нити накаливания.

Все работы проводятся очень аккуратно, так как недопустимо оторвать проводку, которая отходит от цоколя.

После раскрытия будет видна плата самого электронного блока – своего рода пусковое устройство, которое есть во всех первоначальных лампах дневного света. Только современные электронные, а в старых – стартер, дроссель.

Читайте также:  Ремонт насоса гидроусилителя руля камаза

Поиск и ремонт неисправности

Поломка может заключаться в коротком замыкании либо пробое. Для этого первоначально осматривается электронная плата на элементы видимых повреждений. Осмотр проводится с двух сторон. Повреждения платы – деформирование, черные точки, пробои.

Если найдено повреждение невооруженным глазом, то все равно требуется проверка поверхности всей платы.

Предохранитель

Предохранитель найти легко. Эта система находится в объединении цоколя и платы. Он сверху покрыт изоляционным слоем и находится в состыковке с резистором. Для определения работоспособности предохранителя необходимо воспользоваться мультиметром. Для этого одно щупальце присоединяется к предохранителю, а другое к плате. Так проводится измерение сопротивления.

При исправности сопротивление покажет значение примерно в 10 Ом. При повреждениях – 1 Ом. При неисправности этого элемента он устраняется, новый припаивается.

Колба

Поломка может заключаться в перегорании нити электрода в колбе. Неисправная нить подлежит замене. Если нити нет, то возможна установка резистора с таким же сопротивлением. Для этого он припаивается параллельным способом со спиралью, которая сгорела. Далее требуется проверка работоспособности всей платы (полупроводников).

Транзисторы и резисторы

Чтобы проверить исправность транзистора, для начала он изымается из схемы. Это обязательный момент, поскольку переходы находятся в обмотке. Если выявлена поломка транзистора, то замена производится на идентичный. Не допустима замена на элемент с другими параметрами. При этом корпусная часть может быть различной, это не повлияет на ход ремонта.

При проверке резистора используется также мультиметр. Номинальное значение просматриваем на корпусе устройства. Все элементы должны быть проверены последовательно.

Конденсаторы

Конденсаторы проверяются аналогично прописанным способом. Ремонт предусматривает замену неисправного элемента. Вышедший из строя конденсатор принимает деформированную форму – протечка, вздутие корпуса.

Поломка конденсатора – самая распространенная причина выхода из строя энергосберегающих ламп. Особенно китайского производства.

Ремонт балласта

Если колба исправна, то поломку надо искать в балласте. Он осматривается на предмет сгоревших элементов. Если замечены прогоревшие следы, вздутия, деформация, то требуется замена вышедших из строя элементов. При не восстановлении работоспособности лампы после замены данных компонентов, требуется прозвон всей цепи.

Последовательность поиска неполадок балласта:

  • Замена резистора-предохранителя – частая проблема балласта.
  • Выпаиваются конденсаторы. (После пайки требуется проверка мультиметром – проверяются диоды моста без их предварительного выпаивания).
  • Если проверка предыдущих элементов не нашла неисправностей, то переходит работа на поиск неисправностей в транзисторе. Для этого требуется выпайка элемента.
  • При замене всех частей начинается этап сборки.

Ремонт при перегоревшей нити

При починке перегоревшей нити проводят работу в балласте во внештатном режиме. При подаче сильного напряжения пусковая деталь ломается. При одинаковой подаче напряжения лампа прослужит до 1,5 года. Также срок эксплуатации зависит о качества и вида встроенных схем. Если перегоранию подверглась одна нить, проводится ее шунтирование сопротивлением. Для этого необходима установка резистора с сопротивлением равным сопротивлению уцелевшей нити.

Советуем посмотреть видео-инструкцию:

Сборка энергосберегающей лампы

После восстановления всех деталей ЭСЛ, требуется ее протестировать до сборки. Для этого производится вкручивание в патрон и наблюдается ее загорание. Если мерцание отсутствует, следующее действие – сборка энергосберегающей лампочки.

Если пусковое устройство не подходит для ниши, то производится подгибание конденсаторов сопротивления. При этом необходимо наблюдение за отсутствием замыканий. Далее собирается лампа в обратном направлении. Производится подклейка частей, поврежденных при разборке.

Профилактика

Чтобы уменьшить процент выхода из строя энергосберегающих лампочек, необходимо применять методы профилактики:

  • Исправная вентиляционная система позволяет улучшить отток тепла. При этом сократятся случаи короткого замыкания, которые случаются из-за перегрева лампочек либо схем балласта.
  • Установка стабилизаторов. Они позволяют нормализировать подачу напряжения. Так как при резких перепадах случается пробой пускового устройства. Такое часто бывает и при установке производителями дешевого пускового устройства.
  • Установка между нитями накаливания NTC-термистора. Он поможет урегулировать подачу тока. При этом уменьшается вероятность перегорания нитей.
  • Не следует подвергать лампы механическому воздействию, это приедет к выходу из строя внутренних деталей либо поверхностным трещинам.

Термистор не устанавливается вблизи балласта, так как произойдет перегревание термистора, и он сломается.

В заключение

Отремонтировать энергосберегающую лампу своими руками возможно, но это требует времени, возможно, материалов. Не каждый человек сможет подойти к ремонту ответственно. Но починка дешевле, чем приобретение новой лампочки. Особенно, если из стоя вышло несколько лампочек.

Статья пригодилась? Оставьте комментарий, поделитесь с друзьями в соцсетях.

Источник

Adblock
detector