Четырехходовой клапан для обратного осмоса ремонт

4-х ходовой клапан

Работа фильтра обратного осмоса подразумевает накопление очищенной воды в отдельной емкости — баке, и определенный цикл работы по её наполнению.
При этом необходимо, чтобы работа системы была максимально эффективной и экономной, то есть при 100% заполнении накопительной емкости фильтрация должна быть приостановлена, а система находиться в состоянии покоя. В свою очередь, когда из бака отбирается необходимый объем очищенной воды, требуется восполнить запасы. За автоматизацию процесса включения и выключения фильтра отвечает гидроавтоматический клапан (отсечной клапан). Он полностью автоматизирует процесс фильтрации и не допускает так называемой «работы вхолостую»: останавливает процесс очистки, когда это необходимо.

Автоматический гидровыключатель воды для фильтров обратного осмоса – это механический четырехходовой клапан. Он состоит из двух частей, разделенных мембранными элементами и подвижным сердечником, имеет два входных и два выходящих подключения. Вход и выход на корпусе обозначены соответственно «in» и «out».

Верхняя часть клапана контактирует только с предварительно очищенной водой:

  • «IN верх»: к входному верхнему отверстию подключается трубка после третьего фильтра предварительной очистки
  • «OUT верх»: с верхнего выхода вода поступет на вход мембраны

Эта половина клапана служит для перекрытия подачи воды на вход мембраны и остановки процесса фильтрации.

Нижняя часть отсечного клапана контактирует с чистой водой, после фильтрации мембраной и поставляет её в накопительную ёмкость.

  • «IN низ»: на нижний вход клапана поступает очищенная мембраной вода с выхода чистой воды корпуса мембраны
  • «OUT низ»: нижний выход перенаправляет чистую воду в накопительный бак
Читайте также:  Мма 200 схема ремонт

Эта половина четырехходового клапана контактирует исключительно с очищенной водой.


Гидропереключатель воды фильтра обратного осмоса в действии

Когда бак заполняется до предела, давление воды воздействует на эластичную мембрану нижней части внутри 4-х ходового клапана. Под давлением приводится в движение внутренний подвижный сердечник, он прижимает мембрану с противоположной стороны к стенке корпуса, тем самым перекрывается поступление воды на вход мембраны. Это останавливает процесс фильтрации, система остается в состоянии покоя, сброс в канализацию прекращается. Как только из бака будет отобрана вода, давление внутри отсечного клапана будет сброшено и вновь фильтрация возобновится до полного накопления емкости.

Признаки неисправности четырехходового клапана

Так как основной задачей автоматического выключателя воды является остановка работы системы при необходимости, то первым признаком его неисправности будет непрерывная работа фильтра и постоянный сброс воды в дренаж. Это может произойти если была повреждена одна из мембран внутри клапана, в таком случае не создается необходимое давление, подача воды не останавливается и система работает непрерывно. Если вы заметили, что фильтр обратного осмоса постоянно сбрасывает воду в дренаж, одной из возможных причин может быть именно износ мембранных элементов четырехходового клапана. В такой ситуации лучшим решением будет заменить клапан в фильтре обратного осмоса полностью, купить новый гидропереключатель воды, это выйдет недорого, но позволит сэкономить на расходе воды за счет своевременной остановки процесса фильтрации.

Источник

Четырехходовой клапан для обратного осмоса ремонт

Пост, из которого вы узнаете о самой частой скрытой неисправности фильтров обратного осмоса и ее устранении, несколько раз пожалеете, что приобрели это лучшее на сегодня средство очистки питьевой воды и в конце ужаснетесь тому, что ни разу не промывали свой фильтр — уж лучше бы он протекал, а вы не знали…

Полагаю, суммарно обладатели фильтров воды с обратным осмосом за год фильтруют и — не ведая того — сливают в канализацию озеро Байкал или около того.
За свои деньги, разумеется. По крайней мере у меня ежеминутно незаметно стекало в дренаж 0,4 литра отфильтрованной воды. Это по паспорту, а по замеру и того больше!
576 литров в день или 17 тысяч литров в месяц. Они же метры кубические, за которые мы и платим. Плюс частая замена трех картриджей ввиду их круглосуточной работы.
Но чистую воду мне жалко больше денег. Намного…

И все из-за крохотной детальки, неисправность которой внешне себя никак не проявляет. Срок ее службы — по отзывам — год-три. Она есть в любом фильтре воды с обратным осмосом за исключение фильтров с электронасосом. Четырехходовый клапан.
Описанные ниже действия займут минут 5-10 в зависимости от подкованности исполнителя, а описаны подробно лишь с той целью, чтобы это время сделать реальным.

Я уже писал о неудачной покупке самого дорогого из найденных четырехходовых клапанов в Москве — лишь бы фирменный! — когда по факту мне привезли «галимый китай» без упаковки с кривым пластиковым корпусом. Так еще и неработающий! После чего я, разумеется, его вернул и заказал на AliExpress, раз они все равно оттуда. При сноровке там их можно найти в три-двадцать раз дешевле с учетом доставки. Как там ваша сноровка?
Теперь установил и не нарадуюсь.

Знаете, как проверить работу фильтра на постоянный сброс воды в канализацию? Если, разумеется, вы не слышите постоянного журчания воды в кухонной раковине, что дополнительно свидетельствует о неправильной установке дренажной трубки.
Вот вам два способа.

Женский.
Закрыть все краны и перекрыть возможные протечки. Надеюсь, ваш унитаз не течет потихоньку? Посмотреть счетчик холодной воды. Современные счетчики имеют три знака после запятой. Те, что до запятой — это кубические метры (или тысячи литров), а третий знак после нее — это как раз единицы литров. Самый слабый фильтр в случае неисправности будет травить 0,25 л/мин, и вы на глаз заметите слабое вращение колесика литров при — повторюсь — наличии трех разрядов цифр после запятой. Нет трех разрядов — сравните показания утром и вечером, пока вас не было. Если счетчик указывает на течь, а после отключения подачи воды в фильтр краником на трубе холодной воды под мойкой, она прекратилась, — заинтересовано читайте дальше.

Мужской. Отнимет те же пять минут, но более точный, и жена будет впечатлена.
Перекрыть подачу воды на вход фильтра и краник на накопительном баке.
Вытащить фильтр в удобное место — вот именно на это уходит 4 минуты.
Дренажная трубка идет к стоку воды из кухонной раковины, другой ее конец необходимо вынуть из ограничителя потока дренажа (единственный цилиндр сантиметра два в диаметре 8-12 см длиной), и под последний поставить пустую банку, которая будет играть роль канализации.
Включить подачу воды в фильтр и открыть краник на накопительном баке . При этом из ограничителя потока начнет литься вода.
Закрыть накопительный бак, имитируя его заполнение, когда вода перестает в него поступать. Из ограничителя потока вода должна плавно перестать сливаться в банку.
Если вода, не ослабевая, продолжает литься более 30 секунд — читайте дальше. Если за это время напор начал слабеть — ждите прекращения. Если за 3-5 минут этого не случилось — ваш 4-хходовый клапан умер не до конца и травит.
Замечу, что делать все это надо, когда в фильтрах нет воздуха, склонного к сжатию-расширению, т.е. никак не сразу после замены фильтров на новые.

Надо признать, что кроме четырехходового клапана, как наиболее частой причины постоянного слива воды в дренажную канализацию, из строя может выйти обратный клапан. Он стоит между мембраной обратного осмоса и тем не имеющим названия входом 4-хходового клапана, который расположен со стороны входа IN. Если мембрана и этот вход соединены трубкой напрямую — в вашем фильтре обратный клапан находится внутри колена мембраны.

Итак, лечение: менять 4-хходовый клапан как наиболее частого виновника.
Не помогло — менять обратный клапан. Если кроме постоянного сброса воды в дренаж, расширительный бак пустой (легкий и гулкий при стуке по нему) — с этого нужно начинать. Когда обратный клапан внутри колена, оно просто выкручивается из мембраны. Все это занимает по минуте времени.
Опять не помогло? Попробуйте поменять саму мембрану — синий фильтр внутри корпуса с тремя выходами — его прокладки могут прохудиться, но на фоне прочих это редкий случай.

И последнее — за что вы страдали.
Для чего вообще нужен четырехходовый клапан в фильтре обратного осмоса? Зачем вообще выливать воду в канализацию?
Обратный поток воды через него — который и обеспечивает 4-хходовый клапан — через промывает тонкоплёночную композитную мембрану, защищающую воду от органических и неорганических соединений, бактерий, вирусов, цист, продлевая срок ее службы и увеличивая эффективность. По инструкции эту мембрану нужно периодически промывать сильным обратным напором воды, на время удалив ограничитель потока дренажа. Надеюсь, вы это делаете, в заботах о драгоценном здоровье семьи? Если нет — меняйте ее раз в полгода, а не в два-пять лет в зависимости от воды и ее расхода, как заложил производитель. Или соберите байпас, включив параллельно ограничителю потока простой кран. Впрочем, если фильтр постоянно травил воду в канализацию, мембрана должна быть чище — ложка меда в бочке дегтя.

Кстати, число на ограничителе потока как раз значит количество кубических сантиметров воды — они же миллилитры — в минуту при давлении воды 4 атм., который фильтр будет непрерывно выливать в канализацию при указанной неисправности. Мой — 400 cc/min = 400 см3/мин = 400 мл/мин = 0,4 л/мин, но давление воды в доме выше. Кто-то дочитал?

Источник

Учимся как чинить все самому

Скачать видео

☀Подписаться на канал: https://www.youtube.com/channel/UCgkr-SFxffwlNUrIQkv8dcw?sub_confirmation=1

✔ Продавец: http://s.click on.aliexpress.com/e/JIUbyvjA6

Некоторое время назад в моей системе начал барахлить четырех-ходовой клапан, что со временем ведёт к печальным последствиям в виде замены большинства дорогостоящих расходников и окончательной поломке фильтра обратного осмоса. На тот момент всё закончилось чисткой и профилактикой, через несколько месяцев проблема снова дала о себе знать, принял решение заменить клапан на новый, клапан заказывал из Китая на интернет-аукционе Aliexpress. Собственно в этом видео можно увидеть весь процесс замены этой важной детали фильтра, также на канале есть видео по всем ключевым моментам обслуживания и профилактики фильтров обратного осмоса.

Смотрите также:
►►Инструкция по полной замене картриджей в фильтрах обратного осмоса


►►Профилактика, чистка и обслуживание мембраны

►►Доработка фильтра обратного осмоса. Установка дополнительной колбы в систему

►►Доработка фильтра обратного осмоса. Установка манометра в систему

►►Доработка фильтра обратного осмоса. Установка контура промывки в систему

Источник

Обратный осмос: от ремонта до модернизации, или контроллер ZJ-LCD-F7 от китайских умельцев, и его доработка

Сломался фильтр обратного осмоса …

Нет, пожалуй, начать нужно с того, что у меня, в частном доме, нет централизованной канализации — использую выгребную яму (все что налил — нужно вывезти). Учитывая еще то, что зимой нужно хорошо поработать лопатой для снега, чтобы автомобиль смог подъехать к месту, то к расходу воды сантехникой и бытовыми приборами я отношусь очень ревностно.

Так вот когда вывозить яму я стал на неделю раньше обычного срока, первое подозрение пало на фильтр — он подключен к водопроводу и канализации, а что он там и когда сливает — никто не знает. Положив трубку слива отработанной воды в тазик, получил и доказательства вины: после открытия крана чистой воды и срабатывания датчика высокого давления, включается клапан промывки на 20 сек, потом он, как и положено выключается, но на 10-15 сек, а потом опять срабатывает и так по кругу пока не наберется накопительный бак. Хотя, его задача — один раз включиться на 18 сек в начале разбора отфильтрованной воды, промыв таким образом мембрану перед ее использованием. Естественно, расход воды при этом увеличился в несколько раз.

Техническое отступление, для не знакомых с обратным осмосом

Фильтр обратного осмоса один из самых эффективных фильтров питьевой воды. Фильтрующим элементом служит обратноосмотическая мембрана, с настолько маленькими ячейками, что через них может, под давлением помпы или водопровода, протиснуться только молекула воды или растворенные частицы таких же размеров, а таких — мизер. Производители фильтров заверяют, что через мембрану не проходят даже бактерии и вирусы. Я попробовал с микрометром гоняться за бактериями — так и не получилось снять мерки. За вирусами не пробовал — из защитных средств у меня только диэлектрические перчатки :-). Так что поверим на слово.

Вода через мембрану проходит довольно медленно — течет тонкой струйкой. Поэтому после мембраны всегда ставят накопительную емкость на 5-10 л, с резиновой диафрагмой, под которую закачан воздух. Под давлением помпы (водопровода) при наборе воды диафрагма сжимается, при разборе — воздух выталкивает воду. Кроме мембраны фильтр содержит входной клапан, входной датчик низкого давления (водопроводного), датчик высокого давления на выходе мембраны, показывающий, что начался разбор отфильтрованной воды, и клапан промывки. Когда срабатывает датчик высокого давления (давление в накопительной емкости упало при разборе воды), открывается входной клапан и включается помпа (если таковая есть). Чистая вода начинает проходить сквозь мембрану в накопительную емкость, а вода с остатками примесей, сливается через ограничитель потока с калиброванным отверстием (300-500 лм/мин в зависимости от производительности мембраны) в канализацию. Кроме того, сразу после срабатывания входного клапана, на 15-20 сек открывается также и клапан промывки, включенный параллельно ограничителю потока, для быстрого смыва застоявшейся перед мембраной воды. Естественно, когда накопительная емкость будет полной — сработает датчик высокого давления, входной клапан закроется и система перейдет в режим ожидания. Если фильтром несколько дней не пользоваться, перед мембраной может заводиться всякая «живность». Поэтому нужно периодически брать пару стаканов чистой воды даже если в этом нет необходимости, чтобы включался клапан промывки. По этой же причине через 3-4 года эксплуатации желательно менять накопительную емкость.

Через какое-то время мембрана вырабатывает свой ресурс (обычно 2-3 года), ячейки увеличиваются и сквозь мембрану начинают проходить растворенные соли более крупных размеров — увеличивается минерализация воды. Чтобы знать когда пора менять мембрану, желательно периодически измерять общую минерализацию. Я, например, для этого приобрел недорогой измеритель «TDS-3». TDS (Total Dissolved Solids) — это общее количество растворенных частиц, то есть общая минерализация. Измеряют ее в миллиграммах на литр (мг/л) или в миллионных долях — parts per million (ppm). Эти единицы близкие по значению и для простоты считаются равными. Для точного определения TDS используется метод испарения — отношение веса оставшегося осадка к весу воды до испарения. Для приближенных измерений используется метод измерения электропроводности воды (именно соли добавляют воде эффект электропроводности). Такие приборы называют еще кондуктометрами (conductivity — электропроводность).

Есть и противники у обратноосмотических фильтров. Они утверждают, что вода после них мертвая — одни молекулы воды. Если ее пить — вымываются мол минеральные соли из организма. Другая крайность — пить воду из артезианской скважины. Ее минерализация может быть такого уровня, что пить ее постоянно тоже рискованно (такую воду относят к разряду: лечебно-столовая). А если минерализация еще больше — это уже лечебная вода, которую нужно принимать по назначению врача.

Но ведь никто не запрещает противникам обратного осмоса найти поставщика минерализированной воды из скважины и не обработанной обратным осмосом. Причем узнать это не по рекламным заявлениям производителя, а какими-то другими путями (например, используя личные связи — на таких предприятиях могут работать знакомые, или знакомые знакомых). И добавлять к обратноосмотической, в нужной пропорции, воду, прилично обогащенную минералами, из такой скважины. Подозреваю, что большинство производителей бутилированной газированной и негазированной воды так и получают воду, с четко регламентированным количеством солей, указанном на этикетке. Кстати мой «TDS-3» всегда показывал минерализацию, укладывающуюся в диапазон общей минерализации, указанной на этикетке бутылки с водой.

Ремонт

Ну что же, раз идет перерасход воды — неисправна автоматика. Достаю обтянутую термоусадкой автоматику, разрезаю ее … и сильно удивляюсь (пока первый раз) — автоматика представляет собой жгут соединенных определенным образом проводов. А где же микроконтроллер — 21-й век на дворе! С другой стороны, эта «автоматика» исправно проработала больше пяти лет: может производитель и прав — зачем удорожать изделие.

Собственно схема получилась такая — клапаны открываются через контакты датчиков высокого и низкого давления, соединенные последовательно: датчик низкого давления НР (замыкается при давлении воды на входе); датчик высокого давления НЗ (наоборот, замыкается при отсутствии давления во время разбора отфильтрованной воды). Клапан промывки стоит параллельно ограничителю потока 300 мл/мин и, как потом выяснилось, содержит электронную схему, включающую клапан на 18 сек после подачи питания. Блок питания — обычный выпрямитель, без стабилизатора (без нагрузки 31V, при включенном клапане промывки 27V). Вот собственно схема фильтра: и принципиальная, и гидравлическая (рис. 1).

Рис. 1. Схема фильтра с простой автоматикой

Таким образом, получается, что неисправна электроника, встроенная в клапан промывки. Клапан был извлечен, разобран, срисована схема электроники управления клапаном — схема задержки построена на таймере HA17555 (рис. 2).

Рис. 2. Схема автоматического клапана промывки

Никаких внешних признаков: подгоревших деталей, плохих паек, обрывов дорожек. Детали звонятся нормально. Электролитические конденсаторы без утечки и имеют номинальную емкость.

Но оказалось, что при включении на столе, от лабораторного источника питания — клапан работает как положено: включается при подаче питания на 18-20 сек и выключается до следующей подачи питания. Никакие механические влияния на клапан не заставили его опять перестать работать. Проверка блока питания также результата не дала.

Клапан был установлен на место, фильтр собран и включен — все работает в штатном режиме. Но я был очень недоволен — неисправность не была локализована и могла опять проявиться в любой момент.

Выбор

Поэтому я «психанул» и решил поставить на обратный осмос умную автоматику на микроконтроллере. Сформировал свои требования к умной автоматике:

Контроль входного датчика и датчика высокого давления. Блокировка при отсутствии воды.

В начале разбора чистой воды — включение входного клапана и промывка мембраны 20 сек.

После наполнения накопительного бака — выключение входного клапана.

При простое пару раз в сутки включать промывку мембраны для борьбы с микробами.

Желательно контролировать количество солей в отфильтрованной воде TDS-метром. При выходе за установленный предел — сообщить о необходимости замены мембраны.

Каким-то образом контролировать время работы разных фильтров и мембраны. Сообщать когда время наработки фильтров будет исчерпано.

У меня есть опыт работы с микроконтроллерами, но не хотелось «изобретать велосипед» (наверняка такие устройства уже разработаны и выпускаются), лепить это все в корпусе от мыльницы, и тратить свободное время, которое уже было запланировано для решения других задач (строительных). Оказалось, что так и есть — на рынке присутствует пара вариантов.

Первый вариант: электронный контроллер СВ-5

Его (рис. 3) можно приобрести в местных интернет-магазинах. Стоимость эквивалентна 50$. Под фильтры с питанием 24V. Производятся вроде бы в Турции.

Рис. 3. Контроллер СВ-5

Первые 5 пунктов моих требований выполняются. При простое более 7,5 часов должен включить промывку. В комплекте идет только крепежное приспособление и электроды датчика солемера. Тройник, куда вставлять электроды нужно подбирать и покупать самому. Перечень комплектации какой-то неконкретный.

По поводу шестого пункта моих требований — тут есть вопросы. В интернет-магазинах дают только фото выключенного блока. Но нашел видео о работе фильтра с установленным СВ-5 и там видны практически все режимы его работы. Ни в одном из режимов на дисплее часов не выявлено — значит внешний модуль RTC (Real-time clock), при его копеечной стоимости, в СВ-5 не установлен. Возможно, из-за неудобства периодической смены элемента питания RTC. То есть используется только вычислительная мощность микроконтроллера. В то же время, например, в микроконтроллерах AVR, функция millis() возвращает 4-байтовое число без знака. В число такого типа максимально можно поместить 4 294 967 295 миллисекунд, что соответствует примерно 49 дней и 17 часов. Кроме того, существуют библиотеки, позволяющие подсчитывать время более 49 дней — «хоть до второго потопа». То есть считать месяцы для микроконтроллера не проблема. Но тогда для защиты от пропадания электропитания нужно хотя бы раз в сутки увеличивать счетчик отработанных дней в EEPROM микроконтроллера (или внешнем). Тогда можно вести учет дней работы фильтров или мембраны и выводить в каком-то виде на дисплей (в СВ-5 предусмотрено пять шкал для разного количества месяцев наработки от 3 до 36). Правда выдержит ли EEPROM микроконтроллера такое количество циклов перезаписи — это вопрос?

Второй вариант: контроллер обратного осмоса ZJ-LCD-F7

Продается на Aliexpress (рис. 4). Стоимость самого контроллера порядка 30$, с полным комплектом всех датчиков и клапанов — около 50$. Также под фильтры с питанием 24V. Производители LOUCHEN ZM и HaiHuiLai (Китай). Пункты 1, 2, 3 и 5 моих требований также вроде выполняются. По поводу включения при простое (п.4 требований) пару раз в сутки промывки мембраны — непонятка. Только в одном из магазинов написано, что «каждые 6 часов будет открывать электромагнитный клапан промывки, чтобы промыть мембрану RO в течение 20 секунд» (RO — Reverse Osmosis).

А вот к п.6 моих требований здесь кардинально другой подход — считаются не только отработанные дни, но и количество воды, потребленное от водопровода (контроллер комплектуется датчиком потока). В настройках уже указывается не только максимальное количество отработанных дней, но и максимальный объем воды, который должен пройти через входные фильтры, после которого будет выдано предупреждение о необходимости замены. В настройках можно ввести максимальное значение объема воды для 4 групп фильтров.

Рис. 4. Контроллер ZJ-LCD-F7

Дни подсчитываются микроконтроллером скорее всего по тому же принципу, что и в первом варианте. Остается и проблема долговечности EEPROM.

Нужно быть внимательным — точно в таких же корпусах продаются контроллеры расхода воды, но называются ZJ-LCD-М. Основное отличие внешне — дополнительные кнопки «Старт» и «Стоп» и отсутствие проводов подключения электродов солемера.

Для выяснения вопроса об промывке при простое, спросил одного из продавцов: идет ли с автоматикой мануал на английском. Продавец спросил адрес электронной почты и выслал документацию. Но там оказались: текстовый файл (формат .txt) с короткой инструкцией, пару фото товара и мануал какой-то «левой» автоматики с названием LCD-M. Тщательные попытки поискать мануал в pdf-формате в Интернете увенчались успехом. В инструкции действительно указывалось об автоматической промывке через каждые 6 часов. Также там указывалось, что при превышении количества солей свыше 50 ppm, контролер поднимет тревогу зуммером и морганием на дисплее.

Дополнительные сенсоры (датчик потока и TDS сенсор) подключаются по следующей схеме (рис. 5):

Рис. 5. Схема подключения дополнительных датчиков

После раздумий выбираю вариант 2 — полная комплектация при той же цене что и «чистый» контроллер 1-го варианта, плюс учет расхода воды — что особенно для меня важно. Решение принято, товар оплачен.

Как измеряют TDS другие

Но еще до покупки я уже видел один недостаток ZJ-LCD-F7, с которым не хотелось мириться — короткие провода (не более 50 см). Тут все очевидно: раз я покупаю контроллер с дисплеем, значит я хочу контролировать работу фильтра при каждом подходе к нему. И меня явно не вдохновляло при каждом разборе воды залазить на коленях до половины в тумбочку, чтобы посмотреть на текущие параметры контроллера. Выход один — удлинить провода где-то до 1,2 м, чтобы вынести контроллер наружу.

Удлинить провода клапанов, датчиков низкого и высокого давления, а также питания, собственно, не проблема. Датчик Холла сенсора потока выдает прямоугольные импульсы частотой несколько сотен герц (при максимальном потоке). Там, если точно подберешь коэффициент пересчета, можно добиться точности в 1-2% — я с похожим уже «игрался» раньше. В инструкции на контроллер написано, что подстройка коэффициента датчика потока вынесена в меню — так что точность будет зависеть уже от меня. Ну а провода для удлинения датчика потока лучше взять экранированные, и то для уменьшения влияния сигнала датчика на сигналы в других проводах.

Непонятен остался только принцип измерения количества солей в воде TDS сенсором. А от этого будет зависеть погрешность, внесенная удлинением проводов сенсора.

Наверное, сейчас, в ожидании пока доставят товар, самое время «прошвырнуться» по Интернету и посмотреть — а как там измеряют TDS любители? Поиск показал, что датчики для измерения электропроводности воды можно приобрести даже для плат Arduino. Кроме самого датчика и проводов, в набор входит плата (рис. 6). TDS сенсор может быть просто с электродами из нержавеющего металла (цена такого набора 15-20$), а может быть и более профессиональным, один из электродов которого покрыт платиной и такой комплектуется калибровочными растворами (тогда цена будет 50-75$, судя по цене — это явно не мой вариант).

Рис. 6. Наборы для измерения TDS

В некоторых магазинах дают эту ссылку на описание принципа измерения и принципиальную схему платы. Схема (рис. 7), на предлагающейся плате, содержит DC/DC преобразователь напряжения LM2660M (для преобразования +5V в -5V) для питания остальных элементов, 14-ти разрядный счетчик с генератором CD4060BM, выполненный по CMOS-технологии (для формирования прямоугольных импульсов) и 4 прецизионных усилителя в одном корпусе TL034CD.

Рис. 7. Схема платы, идущей в комплекте с сенсором для измерения TDS

Описания работы схемы нет, но внимательно на нее посмотрев, можно понять основные моменты. На операционные усилители и делитель частоты подается питание +/-5V. Сформированные таким образом прямоугольные импульсы размахом от -5V до +5V подаются на один из электродов TDS сенсора. Сигнал, снятый со второго электрода, и зависящий от проводимости воды, подается на масштабирующий усилитель U3B, затем на однополупериодный выпрямитель U3C, превращающий отрицательный сигнал в положительный, и одновременно на сумматор U3D. Последний складывает сигналы, пришедшие в положительной полярности, с сигналами пришедшими в отрицательной полярности, но преобразованные выпрямителем в положительную. Полученное на выходе сумматора положительное напряжение будет пропорциональным проводимости воды. Все эти преобразования происходят на плате на небольшом расстоянии от TDS сенсора. Полученное таким образом напряжение уже по более длинным проводам подается на аналоговый вход микроконтроллера платы Arduino для измерения. При пересчете измеренного напряжения в ppm, учитываются геометрические размеры электродов сенсора.

Почему на первый электрод подают не постоянное напряжение, а прямоугольные импульсы, да еще и частотой около 1 кГц? Дело в том, что во время измерения, фактически через воду проходит электрический ток, из-за чего происходит поляризация молекул — положительно и отрицательно заряженные ионы стремятся к соответствующим электродам сенсора. При этом вода немножко становится электролитом, что вносит сильную погрешность в измерения. Для устранения эффекта поляризации электролита, измерения выполняют на значительной частоте (около 1 кГц). За короткий период измерения ионы просто не успевают поляризоваться.

Также важным моментом измерения является термокомпенсация измерений: величина проводимости зависит от температуры воды, поэтому одновременно с измерением проводимости измеряют и температуру воды, для внесения поправок в результаты измерения.

В самом простом случае (ссылка) радиолюбители обходятся без операционников (рис. 8): два цифровых выхода выдают противофазные прямоугольные импульсы частотой более 3 кГц.

Рис. 8. Простой принцип измерения TDS

В первую фазу на первом электроде «единица», на втором «ноль» и ток течет в этом направлении. В следующую фазу — все наоборот и ток течет в обратную сторону. Выходы микроконтроллера соединены с электродами сенсора через резисторы. Одновременно электроды сенсора соединены и с двумя входами микроконтроллера. При каждой смене фазы — измеряется напряжение на соответствующем электроде. Потом данные усредняются. Проще не придумаешь!

Особо изобретательные радиолюбители (ссылка) смогли подключить TDS-метр, похожий на мой TDS-3, к плате Arduino, получив таким образом неплохую точность измерения. В этом TDS-метре, по утверждению автора статьи, используется принцип преобразования напряжения в частоту, которую Arduino измеряет и пересчитывает в ppm.

Контроллер обратного осмоса ZJ-LCD-F7

Через месяц с лишним я уже внимательно разглядывал диковинку — дошло без повреждений, комплектация соответствовала описанию продавца, внешне по качеству изготовления замечаний не было. Название производителя LOUCHEN ZM красовалось на передней панели. Но никакой документации не положили — хорошо, что я ранее нашел ее в сети. Провода оказались длиной около 40 см — удлинять нужно по любому.

Ну что же, для определения принципа измерения TDS, открываем контроллер и смотрим что там внутри (рис. 9).

Рис. 9. Плата контроллера ZJ-LCD-F7

ZJ-LCD-F7 выполнен на микроконтроллере MB95F636K. Логотип производителя в виде прописной буквы F с черточками сверху и снизу. Казалось бы, что может быть проще — по логотипу вычислить производителя. Но на одном сайте указывали, что это Fairchild Semiconductor, на другом — что это Fujitsu Semiconductor, на третьем — Freescale Semiconductor (главное, чтобы на букву F). Ладно, попробуем поискать как для покупки, и посмотрим производителя. На eBay и Alibaba предлагают эти микроконтроллеры (на фото — логотип как у меня) как Fujitsu Original. Действительно — datasheet на MB95F636K у Fujitsu Semiconductor есть. Ну что ж — будем думать, что это Fujitsu.

Рядом с микроконтроллером — кварцевый резонатор на 16 МГц. Память EEPROM используется внешняя FT24C02A. Микросхема HT1622 используется в качестве драйвера дисплея. Дисплей, судя по картинкам на нем, заказной, не универсальный. Для управления клапанами стоит реле JQC-3FF с током контактов 15А и полевой транзистор UT2955. Источник питания +5V собран на понижающем импульсном стабилизаторе MC34063. Под дисплеем находится лист белого пластика, в торце которого в отверстия вставлены светодиоды подсветки (рис. 10).

Рис. 10. Подсветка дисплея

При осмотре монтажа никаких операционных усилителей я не заметил. Чтобы понять принцип измерения, прозвоню куда идут провода от разъема TDS сенсора. Да… Такого я не ожидал — один провод напрямую, другой через резистор, но оба идут на цифровые входы/выходы. Моих знаний и опыта явно не хватает, чтобы понять — как при помощи двух цифровых входов/выходов, подсоединенных к штырям сенсора, измерить проводимость воды! Или микроконтроллер все же не Fujitsu и имеет другую распиновку? Ну что же, придется немного применить метод обратного инжиниринга — по монтажу нарисовать схему контроллера. Или хотя бы обвязку микроконтроллера и входных разъемов. Сказано — сделано. Вот результат (рис. 11).

Рис. 11. Основная часть схемы контроллера обратного осмоса ZJ-LCD-F7

Теперь все стало на свои места — один из электродов TDS сенсора кроме цифрового выхода, все-таки параллельно идет еще и на аналоговый вход (вывод 15). Получается принцип измерения TDS как в простом случае, рассмотренном выше, только здесь измерение проводится только в одну из фаз. Я ошибся, утверждая, что проще не придумаешь — все-таки еще упростили!

Судя по остальным элементам схемы — микроконтроллер все-таки Fujitsu. Теперь видно, что входным клапаном и помпой управляет мощное реле, а клапаном промывки — полевой транзистор. Видно для экономии цифровых портов ввода/вывода, клавиатура построена на резисторных делителях и подключена к аналоговым входам, для определения по уровню напряжения, какая из кнопок замкнута.

На дисплее слева вверху должно выводиться значение температуры. В инструкции из Интернета пишут, что это температура воды. Но такого датчика в комплектации нет, как и разъема на плате для него. Может датчик на плате и измеряют температуру окружающей среды? При внимательном осмотре, датчика на плате не обнаружил. Остается последний, но самый действенный способ — под перевернутую плату поднести паяльник и смещая его позицию смотреть на изменение температуры на дисплее. Так и есть — температура резко возрастает при поднесении паяльника под микроконтроллер. Внимательно просмотрев Datasheet, нашел регистр, запросив который можно получить температуру делителя микроконтроллера (как самого горячего участка кристалла). Конечно, приятно контролировать температуру кристалла микроконтроллера, но термокомпенсацией TDS тут «и не пахнет»!

Доработки

Удлиняем провода

Начнем с TDS сенсора — насколько повлияет удлинение проводов на принцип его измерения? Готовим удлинитель из двух отдельных экранированных и изолированных снаружи проводов. Я не стал отрезать разъем от сенсора, а на удлинитель поставил разъемы с обеих сторон. Экраны обеих проводов, со стороны контроллера, через дополнительный разъем, подключил к ближайшему контакту общего провода (рис. 12). Теперь могу оперативно переключать TDS сенсор и через удлинитель, и без него.

Рис. 12. Разъем, заземляющий экраны проводов удлинителя TDS сенсора

Теперь собираем «приспособу» — вместо клапанов подсоединяем лампочки, вместо датчиков — тумблеры, датчик потока через трубочки подключаем к емкости с водой, TDS сенсор опускаем в стакан с водой, ppm которой перед этим померил своим TDS-3. Производим первое включение на столе.

Все вроде клацает как положено. Частота прямоугольных импульсов, подаваемых на TDS сенсор — 0,5 кГц. Но, самое главное — это результаты измерения воды с разным содержанием солей. Я в стакан с TDS сенсором заливал и воду из-под фильтра, проверив содержание солей в ней моим TDS-3, и воду смешанную с водопроводной, в определенной пропорции, чтобы получить разные значения ppm. Причем измерял как с удлинителем, так и без него. Вот результаты:

Источник

Оцените статью